
A Hierarchical Deliberative-Reactive System Architecture
for Task and Motion Planning in Partially Known Environments

Vasileios Vasilopoulos1, Sebastian Castro1, William Vega-Brown2, Daniel E. Koditschek3, Nicholas Roy1

Abstract— We describe a task and motion planning archi-
tecture for highly dynamic systems that combines a domain-
independent sampling-based deliberative planning algorithm
with a global reactive planner. We leverage the recent de-
velopment of a reactive, vector field planner that provides
guarantees of reachability to large regions of the environment
even in the face of unknown or unforeseen obstacles. The
reachability guarantees can be formalized using contracts that
allow a deliberative planner to reason purely in terms of
those contracts and synthesize a plan by choosing a sequence
of reactive behaviors and their target configurations, without
evaluating specific motion plans between targets. This reduces
both the search depth at which plans will be found, and
the number of samples required to ensure a plan exists,
while crucially preserving correctness guarantees. The result is
reduced computational cost of synthesizing plans, and increased
robustness of generated plans to actuator noise, model misspec-
ification, or unknown obstacles. Simulation studies show that
our hierarchical planning and execution architecture can solve
complex navigation and rearrangement tasks, even when faced
with narrow passageways or incomplete world information.

I. INTRODUCTION

A. Motivation

In this work, we consider a setting in which a highly ener-
getic quadrupedal robot, capable of behaviors like walking,
trotting and jumping, is assigned mobile manipulation tasks
in an environment cluttered with fixed obstacles and movable
objects (see Fig. 2). Solving these tasks requires planning and
execution of dynamical pedipulation (nonprehensile manip-
ulation of the environment using general purpose legs) [1]
as well as navigation amidst clutter.

Developing computationally and physically viable solu-
tions for these scenarios is challenging, even assuming a
deterministic robot in a fully observable world (e.g., PSPACE
hardness of the Warehouseman’s problem was established
in [2]), and it has been well-understood for many years
that hierarchical abstractions [3] are required to address the
fundamental complexity of such task and motion planning
(TAMP) problems [4]. However, when using hierarchical
abstract planners, it is difficult to ensure the correctness of
the resulting plan, unless every motion primitive in the trajec-
tory is checked for feasibility during planning, significantly
impacting the overall computational cost.

1Computer Science and Artificial Intelligence Laboratory
(CSAIL), MIT, Cambridge, MA 02139 {vvasilo,scastro,
nickroy}@csail.mit.edu.

2Tagup, Inc. will@tagup.io.
3GRASP Laboratory, University of Pennsylvania, Philadelphia, PA 19104

kod@seas.upenn.edu.
This work was supported by AFOSR grant FA9550-19-1-0265, the

ARL/GDRS RCTA project, Coop. Agreement #W911NF-10-2-0016, and
the Toyota Research Institute Award LP-C000765-SR.

Fig. 1: Our proposed system architecture. Given a mobile manipulation
task, a deliberative layer searches for a sequence of abstract actions, or a
plan, using contracts that describe the reachability guarantees of a global
reactive layer, which in turn implements these actions and guarantees
collision avoidance in complex environments. The reactive layer transmits
template commands (such as target velocity or grasping commands) to a
gait layer that executes high-rate feedback to achieve parameterized steady-
state or transitional behaviors on the robot. This architecture allows the
deliberative layer to reason about sequencing actions without constructing
explicit trajectories through the configuration space, improving computa-
tional efficiency while preserving probabilistic completeness.

This paper shows how a deliberative layer and reac-
tive layer can create abstract plans that are correct-by-
construction through the use of continuous constraint con-
tracts (C3) between a deliberative and reactive layer [6]. For
the reactive layer, we adapt a reactive, vector field planner
from our prior work [7] that not only guarantees collision-
free convergence to targets but is also robust to environmental
uncertainty, even in the presence of unanticipated obstacles.

B. Contributions
The contribution of this paper is a hierarchical planning

system, shown in Fig. 1, that has the properties of achieving
the computational efficiency seen in many task and motion
planning approaches, while preserving guarantees of prob-
abilistic completeness that are often sacrificed for compu-
tational gains. Our planning system uses the guarantees of
an online, vector-field-based reactive layer to define action
contracts, such as the reachability of target poses, that can
be used by an offline deliberative layer. The contracts of
each action provide the deliberative planner with knowledge
of each action’s basin of attraction, allowing it to reason
about the effects of sequencing actions without constructing
explicit trajectories through configuration space.

Focusing on the example of a quadruped robot navigating
in an environment with static and movable obstacles, we



(a) The Minitaur platform. (b) Simulated Minitaur.

(c) Simple planning problem. (d) Possible goal state.

Fig. 2: (a) The physical and (b) simulated Minitaur quadrupedal platform
[5]. (c) An example of a complex dynamically-constrained domain in which
a robot must reach the goal on the lower right, where the heights of the
ground plane (z = 0), the obstacle (z = 1), and the goal (z = 2) are all
different. The robot can jump only one unit, so the robot must move the
cart (red square) to enable a sequence of jumps to reach a goal state (d).

demonstrate computational advantages in the deliberative
layer arising from delegating metric details to the reactive
(closed loop) controller. First, the reactive layer allows the
deliberative planner to plan only in terms of transitions
between behaviors, such as grasping and releasing objects.
As a result, fewer samples are needed to find a good plan.
Second, because the deliberative planner is aware of the
domain of convergence for each controller and can produce
plans using the adjacency of those basins of reachability, it
can construct plans with fewer steps than if it relied solely
on fine-grained motion primitives—for example, line-of-sight
connections—without sacrificing any correctness guarantees.
The difference is especially pronounced when the path
requires traversing narrow passages, which are notoriously
difficult for sampling-based planners. The reduction in the
length of plans dramatically reduces the time required to
search for a high-level plan.

C. Organization of the Paper
The paper is organized as follows. Section II summarizes

related work. Section III describes the proposed multi-layer
architecture, along with its formal guarantees. Section IV
describes the mobile manipulation problems addressed in
this paper, in two different planning approaches for the
deliberative planner: a local reactive approach, employing
the reactive layer to simply track reference trajectories from
the deliberative layer, and our global reactive approach with
the proposed architecture. Section V describes numerical
studies contrasting the performance of the local reactive
planner with the global reactive planner in different mobile
manipulation scenarios. Section VI provides implementation
examples with a simulated robot, and, finally, Section VII
concludes with our remarks and ideas for future research.

II. RELATED WORK

Hierarchical abstractions for TAMP have been well studied
in the literature. Examples include the use of a deliberative

planner that employs a reactive execution layer—such as a
motion primitive library [8], or pre-image backchaining with
a higher-level planner in deterministic [4] and stochastic [9]
settings—to simplify the computational burden of planning.
Solutions typically involve a marriage of fast discrete plan-
ning tools [10] and sampling- or grid-based discretizations of
the continuous action space [11], with significant engineering
effort expended on the design of effective heuristics and
sampling strategies that exploit task-level and geometric
information [12]. Angelic semantics [13] provide a way
of describing abstractions that also preserve optimality, but
there is no easy way of defining such abstractions in contin-
uous domains. Our prior work [14] provided a step towards
tractable planning with complex kinematic constraints, but
no appropriate approach exists for the complex legged robot
dynamics considered in this paper.

Motivated by the typically high-dimensional configuration
spaces arising from combined task and motion planning,
most approaches focus either on sampling-based methods
that empirically work well [15], [16], or learning a symbolic
language on the fly [17]. Such methods require constant
replanning in the presence of unanticipated conditions and
their search time grows exponentially with the number of
configuration variables.

Other approaches focus on the use of reactive temporal
logic planning algorithms [18], [19], [20], that can account
for environmental uncertainty in terms of incomplete envi-
ronment models, and also ensure correctness when the robot
operates in an environment that satisfies the assumptions
modeled in the task specification. Common in these works
is the reliance on discrete abstractions of the robot dynamics
[21], [22], while active interaction with the environment to
satisfy the logic specification is neglected.

III. VECTOR-FIELD TASK PLANNING

Our objective is to compute plans for a robot to achieve
a goal state, subject to kinodynamic constraints. The active
constraints on the dynamics of the world state vary with the
robot’s behavior, enabling the robot to select different modes
of its dynamics as it plans to move around the world. For
example, a plan for the robot in Fig. 2 might simply be to
navigate its workspace, or to make and break contact with
the objects in the world as it moves around. Each of these
modes corresponds to a different set of constraints.

Following the notation introduced in our prior work [14],
we can define a planning domain by a tuple (h, C), where
h : C × TC → Rk defines a set of k constraints on the
configuration space C and its tangent bundle TC. Then, a
differentiable function σ : [0, T ] → C is a feasible path if
h(σ(t), σ̇(t)) ≥ 0,∀t ∈ [0, T ], where σ̇(t) = dσ(t)/dt. We
denote the set of feasible paths by ΣC .

Based on this description, we can define a planning
problem as a tuple (c0, c

∗), where c0, c
∗ ∈ C are the

initial and goal configurations respectively, and a solution
to this planning problem as a path σ ∈ ΣC such that
h(σ(τ), σ̇(τ)) ≥ 0,∀τ ∈ [0, T ], σ(0) = c0 and σ(T ) = c∗.

Solving for such a path σ ∈ ΣC without further assump-
tions on h(σ(τ), σ̇(τ)) is a formally undecidable problem
[6], and solving the analogous problem for typical discrete



approximations is computationally intractable for scenarios
where the robot needs to make and break contact with
the environment. A conventional approach is to decompose
the problem into a task and motion planning problem: a
deliberative layer first solves for a task plan corresponding
to a sequence of dynamic modes, parameterized by starting
and stopping conditions, and a motion planner generates tra-
jectories within each mode from start to stopping condition.

However, the decomposition into separate task and motion
planning problems typically leads to loss of completeness,
because the task planner may create motion planning sub-
problems that are infeasible. We now describe the formal
conditions under which a combined deliberative and motion
planning layer can compute task plans that preserve prob-
abilistic completeness guarantees of the underlying motion
planner, even without first evaluating it.

A. Deliberative layer

We assume that the deliberative planner has knowledge of
the entire configuration space, including a description of the
world as a collection of objects with geometric information,
such as shape and pose, and other properties that constrain
the types of actions available with these objects.

We use the continuous constraint contract (C3) to repre-
sent states, presented in our prior work [6]. The C3 repre-
sentation is a continuous extension of the SAS+ formalism
[23]; as in most planning formalisms, the state of the world is
parameterized by the value of different variables. A state s ∈
S is a collection of variable–value pairs, and represents the
set of configurations satisfying the constraint defined by the
value assigned to each variable. Each variable v corresponds
to a function ηv(c) mapping configurations c to an element of
the variable’s domain; a state {v1 = p1, v2 = p2} describes
the set of configurations c such that ηv1(c) = p1 and
ηv2(c) = p2. There is no requirement that every variable
have an assigned value; variables without values represent
inactive constraints.

To travel between states, we assume the lower level motion
planner can instantiate actions, parameterized by a start and
goal; the deliberative planner must then choose a sequence
of different actions as well as their parameterization.

Theorem 1 (Representing constraints as analytic functions
– Included in [6]) If the kinodynamic constraints h are
piecewise-analytic in the sense of Sussmann [24], and the
dynamical system is stratified controllable in the sense of
Goodwine and Burdick [25], then there is a stratified C3
instance whose actions represent piecewise-analytic vector
fields, in which the constraints can be expressed as equalities
and inequalities involving only analytic functions.

Using Theorem 1, the planning problem becomes one of
choosing a sequence of vector fields and their parameteriza-
tions. We can further take advantage of this result by defining
actions as a contract between the deliberative and motion
layers: formally, we define the requirements and effects of
an action a with continuous parameterization Θa in terms of
two functions ga : S×Θa → B and fa : S×Θa → S, where
S is the space of possible states s. The function ga(s,θ)
defines the requirements of the action, and fa(s,θ) defines

its effects. If the system is in state s when executing action a
with parameters θ, then the motion planner guarantees that
if ga(s,θ) = 1 then at some point in the future the system
will reach state s′ = fa(s,θ).

However, such guarantees are in practice difficult to
describe. The easiest guarantee to provide is one where
the motion planner is restricted to straight-line actions pa-
rameterized by an end point, and enforces reachability by
evaluating each straight-line trajectory for violations of the
kinodynamic constraints. A deliberative planner using this
simplistic motion planner would offer probabilistic guaran-
tees of completeness, but with essentially no computational
advantage from the decomposition into deliberative and mo-
tion planning. The challenge is to identify a motion planner
that can enforce the C3 contracts in a computationally
efficient manner.

B. Reactive layer

We now describe a reactive motion planner with a key
property: the corresponding C3 contracts can be checked
very quickly, without sampling, discretization, or collision-
checking. Rather than instantiating a single motion plan, the
reactive layer constructs a control policy that is guaranteed to
achieve the objectives specified by the deliberative layer, or
to return with a failure condition expressing the incorrectness
of a presumed constraint in the actual environment.

The reactive layer models the robot as a polygon, and takes
as input an estimate of the current reachable set of robot
poses, in the form of a polygonal connected component of
the robot’s workspace, along with a high-level action a with
all parameters θ ∈ Θa chosen by the deliberative layer. The
reactive layer is implemented using the vector-field-based
feedback motion planning scheme introduced in our prior
work [7], and its critical advantage is the use of a diffeo-
morphism construction to deform non-convex environments
to easily navigable convex worlds, by employing domain
specific knowledge about encountered obstacles.

In the reactive layer we assume that the robot is the only
active agent in the world, and behaves like a first-order,
nonholonomically-constrained, disk-shaped robot, centered
at location x ∈ R2, with radius r ∈ R>0, orientation ψ ∈ S1

and input vector u := (v, ω), consisting of a fore-aft and an
angular velocity command. We denote by W the robot’s non-
convex polygonal workspace, and by Wx ⊆ W the polygonal
region corresponding to the space reachable from the robot’s
current position x. The workspace is cluttered by a finite
collection of disjoint obstacles of unknown shape, number,
and placement. Similarly, the freespace F is defined as the
set of collision-free placements in W , and we denote by
Fx ⊆ F the freespace component corresponding to Wx.

During online execution, the reactive controller synthe-
sizes an action as a control law by constructing a diffeomor-
phism h between Fx and a convex model environment, where
non-convex obstacles are either deformed to topologically
equivalent disks or merged to the boundary of Fx. Then,
the robot can navigate by generating virtual commands v =
(v̂, ω̂) as in [26], for an equivalent unicycle model (defined in
[27, Eqs. (24)-(25)]) that navigates toward the assigned target
position x∗ in this model environment, and then mapping the



virtual commands to physical inputs (v, ω) through the push-
forward of the inverse of h, i.e., u = [Dxh]

−1
v.

Using the language of the deliberative layer, the require-
ments ga(x,x∗) of a navigation action are satisfied if both
the robot and target positions are contained in the same
component Fx of the robot’s freespace. More formally, we
can decompose F into a finite collection of connected poly-
gons (possibly with holes), and define a set-valued function
βF : F → 2F , such that Fx ≜ βF (x) ⊆ F is the connected
component containing x. We describe an implementation of
this function in Section IV-C.

Theorem 2 (Target convergence and obstacle avoidance –
Corollary of [7, Theorem 2]) If we define ga(x,x

∗) to be
equal to 1 when d(βF (x), βF (x

∗)) = 0 and 0 otherwise
(with d(·, ·) the distance between sets), then the online
reactive planner guarantees that the robot will converge to
the target x∗ (i.e., fa(x) ≜ x∗), while avoiding all obstacles
in its workspace.

It should be noted that Theorem 2 covers only navigation
actions; to navigate across mode boundaries (i.e., across
connected components of the configuration space), we use
special-purpose local actions (e.g., the action jump men-
tioned in Section IV).

C. Combined deliberative-reactive planning

In practice, given a C3 problem instance describing the
permitted actions, the world geometry, and a goal specifica-
tion, we construct a graph by sampling random parameters
for actions. In navigation or manipulation problems, this
generally involves sampling candidate placements for objects
or for the robot. Importantly, Theorem 1 allows us to sample
from the free space of each object independently, rather
than sampling from the joint configuration space, without
sacrificing completeness. We then perform a direct heuristic
search over the planning graph to synthesize a plan. We
reduce the computational cost of the search by considering
only a reduced set of constraints in the action requirements
when sampling, and checking the remaining constraints only
when we find a candidate plan to a given state. We refer the
reader to [14] for more details on the graph construction and
search.

Theorem 3 (Combined probabilistic completeness – Corol-
lary of Theorems 1–2) If our planning domain contains
only modes defined by piecewise-analytic constraints and
stratified controllable dynamics, and there exist local actions
for navigating across mode boundaries, then the delibera-
tive planner will eventually sample a feasible motion plan,
expressed as a sequence of reactive planner actions between
connected components of the configuration space.

IV. SYSTEM IMPLEMENTATION

In this Section, we describe the specific class of mo-
bile manipulation problems addressed in this work. While
our planner is general purpose for a wide range of prob-
lems, we consider the problem of a dynamically complex
quadruped robot performing navigation among movable ob-
stacles (NAMO) as in our prior work [28].

(a) In our baseline local reactive planning approach (left), the deliberative
planner must conduct an optimized search over the configuration space of
robot and object placements in the presumed freespace and is restricted
to collision free straight-line paths. Motions that instantiate these paths
are generated at runtime by the reactive layer, guaranteeing avoidance
of unanticipated obstacles along the way. The global reactive planning
approach (right) is guaranteed to generate a collision-free path to any target
pose in the robot’s current connected component (highlighted in yellow).
Actions are now represented by putative robot-connected components and
their adjacency relative to robot–object manipulations. This more abstract
contract between layers reduces the deliberative planner’s computational
burden to the exploration of topological adjacency.

(b) Solution to the example from Fig. 2 using the local reactive planning
architecture (Section IV-B) [28]. The deliberative planner finds a sequence
of collision-free straight-line motion primitives to move the robot to the
cart, push the cart near the goal, and finally jump to the goal. Resulting
plans are often long sequences comprising the entire set of used actions.

(c) Solution to the example from Fig. 2 using the global reactive planning
approach (Section IV-C). Shaded regions indicate the robot’s currently
occupied connected component, defining the (global) navigation domain
for the reactive layer. The dashed lines are purely illustrative, as the actual
paths are unknown to the deliberative planner and commanded at runtime
by the reactive layer.

Fig. 3: Comparison of local and global reactive planning approaches.

A. Problem Domain Description

Our chosen model abstraction for planning is a 2.5D semi-
planar world representation, shown in Fig. 2c. All objects
in the world, which can be either static or movable, are
defined as planar polygons, with a pose in SE(2) augmented
by a z value denoting vertical height. The robot can walk
along the polygonal component describing the top of the
currently occupied object, jump on and off the ground plane
and between objects of varying heights provided the height
difference and gap is within its physical capabilities, and
manipulate movable objects on the currently occupied object.

As detailed in [29], to demonstrate our proposed archi-
tecture, we use five types of actions to model the robot
capabilities (move, jump, grasp, release, and push)
and attempt to solve mobile manipulation problems where
the reactive layer is instantiated with either a local reactive
approach that does not allow the deliberative planner to
query the reactive planner for motion contracts, or with the
proposed global reactive approach described in Section III
(see Fig. 3). We use the local reactive approach as a baseline



comparison because it is equivalent to TAMP planners that
provide correctness guarantees, for example, [11], [14], [30].

B. Local Reactive Planning Approach
Given a sequence of actions from the deliberative layer,

the local reactive planner only guarantees the feasibility
of navigating from a starting pose to a target pose if
the path between them is collision-free (Fig. 3b). That
is, the reactive planner can move from x to x∗ if
isfeasible(x,x∗) = 1, with isfeasible(x1,x2)
equal to 1 when CF,r(Psweep(x1,x2), c) ≥ 0 and 0 oth-
erwise, where Psweep(x1,x2) is a polygon containing the
robot polygon at each pose along a geodesic between poses
x1 and x2 in SE(2), and CF,r(P, c) checks for collision of
a polygon P with any object or obstacle in configuration c.
Here, the local reactive layer only plays its intermediating
role when recovering the target pose in the face of unantic-
ipated obstacles—or reporting the infeasibility of doing so.

C. Global Reactive Planning Approach
The crucial advantage of the global reactive controller

developed in [7] is that it guarantees successful navigation
to any pose in its connected component of the freespace, F .
Recall the function βF (x) defined in Section III-B that maps
each robot pose to the connected component of the freespace
containing that pose. In the general reactive planning setting,
βF,o(c) depends on the configuration c of each object, and
returns the connected component of the freespace of object
o, conditioned on the pose of each other object. The reactive
layer then defines, for any goal pose o∗, a closed-loop
controller with an attractor basin that includes the polygon
βF,o(c

∗). Formally, for the purposes of the deliberative layer,
isfeasible(o,o∗) = 1, if o ∈ βF,o(c

∗).
We describe the global reactive planner as a C3 domain,

and use the sampling-based planning algorithm described in
Section III-C to search for a sequence of transitions between
adjacent basins of attraction created by invocations of the
reactive layer. To determine adjacency, we explicitly con-
struct the polygonal connected components of the freespace
containing each robot and object using the Boost Geometry
library [31]. Two polygonal components are adjacent if the
distance between them is small enough to be traversed by a
jumping or manipulation action.

V. NUMERICAL EXPERIMENTS

In this Section, we present scenarios that describe common
task specifications that can be solved using our system, and
we perform qualitative and quantitative analyses contrasting
the performance of the deliberative planner with a local
reactive and a global reactive planner.

A. Known Environment Scenario
In the scenario in Fig. 4, the robot must move an object to

a goal while navigating an increasingly dense set of randomly
generated obstacles known by the deliberative layer. Fig. 4d
shows that planning times increase with the number of
obstacles at a higher rate using the local reactive approach.
Despite the added overhead of decomposing the environment
into connected components when using the global reactive
planning approach, more samples are needed to successfully

solve these tasks using the local reactive system. Also, the
success rate of planning with the local reactive approach
decreases with environmental complexity. For all generated
worlds in which the global reactive approach found a plan,
we planned 10 times more with the local reactive approach.
In the case of zero obstacles, average success rate was 100%,
gradually decreasing to 66.5% for 20 obstacles.

B. Doorways Scenario
The scenario in Fig. 5 explores how planning time scales

with environmental complexity, both in terms of static obsta-
cles and movable objects. Since the complexity of walls is
abstracted away with the global reactive layer, this scenario
can be solved with less samples (and therefore in less time)
than with the local approach, as shown in Fig. 5b. Moreover,
extraneous objects that do not block a doorway have a
significantly lower impact on planning time, as seen in the
inflection points for the “3 Doorways” and “5 Doorways”
lines at 3 and 5 objects, respectively.

VI. SIMULATION EXPERIMENTS

We demonstrate our proposed system architecture on a
Ghost Minitaur [5] quadrupedal robot using the Gazebo
simulator1. In our implementation, the gait layer abstracts
the details of determining how to move the limbs or ne-
gotiate uneven terrain. Specifically, we employ the steady-
state behaviors “Walk” and “Push-Walk” from [28], to
either navigate the workspace or use the robot’s front limbs
as a virtual gripper when manipulating movable objects
respectively. In addition, we use a set of four transitional
behaviors: “Mount”, “Dismount”, “Jump-Up” and “Jump-
Across”, adapted from [32], to mount and dismount objects,
or jump on platforms or across gaps.

A. Doorways Scenario
We show the robot executing plans generated using our

method on the Doorways scenario of Section V-B. Fig. 5d
demonstrates that the global reactive approach allows the
deliberative layer to find plans even in the presence of a
complex space punctured by a large number of obstacles.
Here, the robot has prior knowledge of all fixed walls, but no
prior information on the location of the cylindrical obstacles;
it must discover and avoid them using an onboard LIDAR.

B. Unknown Environment Scenario
In this scenario, shown in Fig. 6, the robot must move from

its starting pose to a specified goal pose. In the absence of
obstacles, the lowest-cost solution involves directly moving
along a hallway to the goal. However, as the obstacle density
increases, it may become difficult to plan around obstacles,
or the hallway may be blocked altogether. In this case, there
is a higher-cost alternative in which the robot can push a
movable object near the top of the environment and navigate
a longer path to the goal. We qualitatively show that the
global approach can handle unanticipated obstacles without

1Video of these simulations is included in the video submission and online
in https://youtu.be/Ta5sVFkNnxo. The files for simulating Mini-
taur in Gazebo can be found in https://github.com/KodlabPenn/
kodlab_gazebo and a C++ implementation of the reactive layer is
included in https://github.com/KodlabPenn/semnav.



(a) Scenario overview (b) Expansion time vs. complexity (c) Node expansions vs. complexity (d) Planning time vs. complexity

Fig. 4: Known Environment Scenario. The robot (blue) must move a block (red) to the goal in the lower right corner of the map. Obstacles (grey) are
randomly generated, ranging from 0 to 20 in number, to explore the effects of obstacle density on planning time (a). With the global reactive approach,
even though each individual graph node expansion becomes more expensive as obstacle density increases (b), the relative decrease in node expansions (c)
results in an overall decrease in planning time (d). Shaded areas denote 5th to 95th percentiles.

(a) Scenario overview (b) Planning time vs. complexity (c) Gazebo scenario (d) Simulation details

Fig. 5: Doorways Scenario. The robot (blue) must traverse an increasingly complex set of walls and push objects out of the doorways to reach the goal
(a). Planning time increases with number of doorways and obstacles, which both add complexity to the problem. Additionally, the contract provided by
the global reactive approach significantly reduces planning times for equivalent problems compared to when utilizing the local reactive approach. Shaded
areas denote 5th to 95th percentiles. (b). Walls are added in the following order: first, the vertical wall containing doorway 1, then the horizontal wall with
doorways 2 and 3, and finally the center walls containing doorways 4 and 5. Objects are randomly placed in locations 1–7, ensuring that first all existing
doorways are blocked before placing extraneous objects in free space. We simulated this scenario in Gazebo (see the accompanying video submission),
adding random cylindrical obstacles that were unknown to the deliberative planner (c), (d). By leveraging the proposed global reactive planning approach,
the robot is able to navigate the environment and manipulate movable objects to reach a goal despite the unforeseen obstacles.

Start

End
Goal Region

Movable object

(a) No unforeseen obstacles

Start

End

Robot detects
obstacles ahead -
Replan triggered

“Move” 
actions

“Grasp”

“Release”
“Jump”

“Move” 
actions

(b) Local Reactive Planning

Start

End

Robot avoids 
unexpected obstacles 

without replanning

“Jump”

(c) Global Reactive Planning

Start

End

Initial plan with a 
single “Jump” action

Replan triggered

“Grasp”

“Release”
“Jump”

Obstacle blocks opening

(d) Replanning needed

Fig. 6: Unknown Environment Scenario. Minitaur must move to a goal region at the top right of the environment. The lowest-cost solution involves
navigating along the hallway on the right, which is successfully executed using both the local reactive and the global reactive approach (a). Random
unanticipated obstacles (black) may appear in this hallway and are only detected and localized when the robot approaches them within a specified distance.
Using the local reactive approach, the robot quickly abandons the initially evaluated plan because some of the initial waypoints lie in obstacle space, and
replans. It then unnecessarily switches to a higher-cost plan, involving manipulating the movable object and navigating a longer path to the goal (b). Using
the global reactive approach, the robot either avoids all interior obstacles without changing its initially executed plan (c), or requests an alternative plan
when detecting that the requirements of the contract are violated, i.e., the robot and the goal lie in different connected components of the freespace (d).

triggering a full replan, unless a newly localized obstacle
blocks the hallway, violating the contract between the layers.
For these simulations, we assume that the robot possesses a
sensor of fixed range (set at 3 m), for localizing obstacles.

VII. CONCLUSION

Our hierarchical planner exhibits the greatest gains in
efficiency when finding long plans with a small number
of actions; problems that require evaluating combinatorially
many transitions remain an open challenge. Our contract-
based approach to action modeling could be combined with

recent improvements in sampling strategies, search algo-
rithms, and planning heuristics. In addition, our approach
could be applied to other classes of robotic platforms for
which local controllers can be devised. Finally, we note that
one shortcoming of our approach is the lack of a mechanism
for the deliberative planner to correct the reactive planner
if it makes a locally suboptimal decision. In principle, we
could defer the selection of the level of abstraction at which
to search for a plan to execution time, or even interleave
searches at different levels of abstraction to capitalize on the
relative strengths of each representation.



REFERENCES

[1] M. T. Mason and K. M. Lynch, “Dynamic manipulation,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems, 1993.

[2] J. E. Hopcroft, J. T. Schwartz, and M. Sharir, “On the Complexity of
Motion Planning for Multiple Independent Objects; PSPACE-Hardness
of the “Warehouseman’s Problem”,” The International Journal of
Robotics Research, vol. 3, no. 4, pp. 76–88, 1984.

[3] J. Wolfe, B. Marthi, and S. Russell, “Combined task and motion
planning for mobile manipulation,” in International Conference on
Automated Planning and Scheduling, 2010.

[4] L. P. Kaelbling and T. Lozano-Perez, “Hierarchical task and motion
planning in the now,” in IEEE International Conference on Robotics
and Automation, 2011.

[5] Ghost Robotics, “Ghost Robotics Minitaur,” 2016. [Online]. Available:
http://www.ghostrobotics.io/minitaur/

[6] W. Vega-Brown and N. Roy, “Task and motion planning is PSPACE-
complete,” in The AAAI Conference on Artificial Intelligence, 2020.

[7] V. Vasilopoulos, G. Pavlakos, S. L. Bowman, J. D. Caporale, K. Dani-
ilidis, G. J. Pappas, and D. E. Koditschek, “Reactive Semantic Plan-
ning in Unexplored Semantic Environments Using Deep Perceptual
Feedback,” IEEE Robotics and Automation Letters, vol. 5, no. 3, 2020.

[8] A. Majumdar and R. Tedrake, “Funnel Libraries for Real-Time Robust
Feedback Motion Planning,” The International Journal of Robotics
Research, vol. 36, no. 8, 2017.

[9] L. P. Kaelbling and T. Lozano-Pérez, “Pre-image backchaining in
belief space for mobile manipulation,” in Robotics Research, 2017.

[10] N. T. Dantam, Z. K. Kingston, S. Chaudhuri, and L. E. Kavraki, “An
incremental constraint-based framework for task and motion planning,”
The International Journal of Robotics Research, vol. 37, no. 10, 2018.

[11] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling, “PDDLStream:
integrating symbolic planners and blackbox samplers via optimistic
adaptive planning,” in International Conference on Automated Plan-
ning and Scheduling, 2020.

[12] F. Lagriffoul and B. Andres, “Combining task and motion planning:
A culprit detection problem,” The International Journal of Robotics
Research, vol. 35, no. 8, 2016.

[13] B. Marthi, S. Russell, and J. Wolfe, “Angelic hierarchical planning:
Optimal and online algorithms,” in International Conference on Auto-
mated Planning and Scheduling, 2008.

[14] W. Vega-Brown and N. Roy, “Asymptotically optimal planning under
piecewise-analytic constraints,” in The 12th International Workshop
on the Algorithmic Foundations of Robotics, 2016.

[15] J. van den Berg, M. Stilman, J. Kuffner, M. Lin, and D. Manocha,
“Path planning among movable obstacles: A probabilistically complete
approach,” in The 9th International Workshop on the Algorithmic
Foundations of Robotics, 2010.

[16] A. Krontiris and K. Bekris, “Dealing with difficult instances of object
rearrangement,” in Robotics: Science and Systems, 2015.

[17] G. Konidaris, L. P. Kaelbling, and T. Lozano-Perez, “From Skills to
Symbols: Learning Symbolic Representations for Abstract High-Level
Planning,” Journal of Artificial Intelligence Research, 2018.

[18] M. Lahijanian, M. R. Maly, D. Fried, L. E. Kavraki, H. Kress-
Gazit, and M. Y. Vardi, “Iterative temporal planning in uncertain
environments with partial satisfaction guarantees,” IEEE Transactions
on Robotics, vol. 32, no. 3, pp. 583–599, 2016.

[19] S. C. Livingston, R. M. Murray, and J. W. Burdick, “Backtracking
temporal logic synthesis for uncertain environments,” in IEEE Interna-
tional Conference on Robotics and Automation, 2012, pp. 5163–5170.

[20] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal-logic-
based reactive mission and motion planning,” IEEE Transactions on
Robotics, vol. 25, no. 6, pp. 1370–1381, 2009.

[21] C. Belta, V. Isler, and G. J. Pappas, “Discrete abstractions for robot
motion planning and control in polygonal environments,” IEEE Trans-
actions on Robotics, vol. 21, no. 5, pp. 864–874, 2005.

[22] G. Pola, A. Girard, and P. Tabuada, “Approximately bisimilar symbolic
models for nonlinear control systems,” Automatica, 2008.

[23] C. Bäckström and B. Nebel, “Complexity results for SAS+ planning,”
Computational Intelligence, vol. 11, no. 4, 1995.

[24] H. Sussmann, “Subanalytic sets and feedback control,” Journal of
Differential Equations, vol. 31, no. 1, pp. 31–52, 1979.

[25] B. Goodwine and J. Burdick, “Controllability of kinematic control
systems on stratified configuration spaces,” Transactions on Automatic
Control, vol. 46, no. 3, pp. 358–368, 2001.

[26] O. Arslan and D. E. Koditschek, “Sensor-Based Reactive Navigation
in Unknown Convex Sphere Worlds,” The International Journal of
Robotics Research, 2018.

[27] V. Vasilopoulos and D. E. Koditschek, “Reactive Navigation in Par-
tially Known Non-Convex Environments,” in The 13th International
Workshop on the Algorithmic Foundations of Robotics, 2018.

[28] V. Vasilopoulos, T. T. Topping, W. Vega-Brown, N. Roy, and D. E.
Koditschek, “Sensor-Based Reactive Execution of Symbolic Rear-
rangement Plans by a Legged Mobile Manipulator,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2018.

[29] V. Vasilopoulos, S. Castro, W. Vega-Brown, D. E. Koditschek, and
N. Roy, “Technical Report: A Hierarchical Deliberative-Reactive Sys-
tem Architecture for Task and Motion Planning in Partially Known
Environments,” arXiv: 2202.01385, 2022.

[30] K. Hauser and J.-C. Latombe, “Multi-modal motion planning in non-
expansive spaces,” The International Journal of Robotics Research,
vol. 29, no. 7, pp. 897–915, 2010.

[31] B. Schling, The Boost C++ Libraries. XML Press, 2011.
[32] T. T. Topping, V. Vasilopoulos, A. De, and D. E. Koditschek,

“Composition of templates for transitional pedipulation behaviors,” in
International Symposium on Robotics Research, 2019.


