
  

  

Abstract— Legged locomotion is a rapidly advancing area in 
robotics, yet still a large number of open questions exist. This 
work focuses on the foot-terrain interaction and its effect on the 
motion of a one-legged system. This interaction is usually 
tackled by disregarding some of the effects of ground 
deformation like permanent deformation and compaction. 
Inspired by other areas of engineering, an impact dynamics 
model is developed, allowing a more thorough study of the 
behavior during fast dynamic walking. This approach can be 
regarded as a viscoplastic one. The monopod controller 
presented in previous work is extended to cope with deformable 
terrains, based on energy dissipation considerations, without 
requiring the knowledge of the ground parameters. Simulation 
results prove the validity of the theory presented. 

I. INTRODUCTION 

A central goal in the field of legged robotics is the 
development of machines able to traverse rough terrain, 
which wheeled vehicles cannot access. However, such 
machines are subject to more complex control requirements. 
The problem is exacerbated when running on terrain with 
unknown properties. Earlier approaches required a known 
type of terrain, to be traversed with a statically stable gait, 
hence simplifying control and stability issues [1]. Other 
works focused on bipeds running over stair-like terrain, e.g. 
[2]. Recent developments towards the running on unknown 
terrains like the RHex and BigDog robots, have been 
demonstrated [3] and [4]. However, the RHex uses open-loop 
control, thus forward speed is not controlled tightly. 

Despite progress made in dynamic models and control 
methods for legged robots, many notable studies disregard 
the importance of foot-terrain interaction. For example, for 
the two-link monopod the contact point between the foot and 
the ground was modeled as a completely stiff revolute joint 
[5]. A similar approach for the dynamic representation of a 
monopod hopping robot was proposed in [6], where a control 
method that can render the robot able to traverse rough 
terrain using a single actuator was presented. In fact most 
efforts in the literature consider the terrain as nondeformable. 
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To cope with the foot-terrain interaction, a reliable 
representation of the ground is needed as the terrain 
deformation affects leg motion, while energy is dissipated. 
Usually a simplified ground model is chosen, and controllers 
cope with any deviations considering them as disturbances. 
However this does not ensure success in highly deformable 
environments. Some works account for a foot-ground 
interaction employing terramechanics, e.g. [7], making use of 
Bekker or similar models [8]. Yet, this approach does not 
always result in an accurate representation of foot-terrain 
dynamic interaction, for which the term “terradynamics” is 
coined [9]. The approach in [9] is interesting for the 
locomotion of the robots examined but does not include the 
impact characteristics, prominent in fast dynamic walking. 

In principle, impacts can be modelled via three methods 
[10]. The stereomechanical theory is not very accurate, while 
FEM methods are computationally demanding and difficult to 
use in online algorithms. The use of compliant (viscoelastic) 
models is the most appropriate, as different soils can be 
simulated by lumped parameters with suitable characteristics. 
More details can be found in the literature, e.g. [11]. In other 
engineering areas viscoplastic extensions of these models are 
proposed, e.g. [12]. In our work, the viscoelastic impact 
models are modified appropriately for use in robotics, in this 
case in simulating the terrain behavior, e.g. as shown in [8], 
therefore a viscoplastic approach is employed. An earlier 
work on this showed its potentials [13]. 

This work studies the effects of foot-terrain interactions in 
legged robots and methods to cancel them out. The adverse 
effects of terrain deformation during motion are illustrated. A 
new model for impact dynamics is developed, allowing the 
study of the behavior of fast dynamic walking for a monopod 
robot. Using response feedback, a new controller is 
developed by modifying a controller from our previous work, 
able to maintain desired apex height and speed with a single 
actuator and in the presence of unknown dissipative terrains. 
Simulation results show that the developed controller 
overcomes terrain variations, and achieve gait objectives. 

II. BACKGROUND ON MONOPOD CONTROL 

Fig, 1a shows a single-actuator hopping monopod robot. 

           
 (a) (b) 

Figure 1. (a) Experimental setup of monopod and (b) monopod’s 2D model. 
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This robot is used in our laboratory as a leg testbed for multi-
legged robots. A novel MultiPart controller (MP) for this 
robot that can control both the apex height and the forward 
velocity with a single actuator at the hip was proposed in [6] 
and [14]. The behavior of the robot was tested and validated 
using an experimental setup, which consists of a central 
pivot, and an arm that allows the robot to perform a circular 
motion, with constraints on pitching. 

The robot is modeled as a body of mass mb , which 
includes the main body mass and partly the supporting arm 
mass, with a springy leg, as shown in Fig. 1b. The free length 
of the leg is L , the stiffness of the linear spring is k , and the 
torque applied by the single actuator is τ . The angle of the 
leg with respect to the vertical is γ  and its instant length at 
any time is l . The energy losses due to viscous friction in the 
leg prismatic degree of freedom (dof) are modeled by a 
damping coefficient b , while the leg mass is considered 
negligible. During stance and assuming a stiff ground with 
appropriate friction, the ground interaction is modeled using 
a revolute joint. The equations of motion during the stance 
and flight phases can be found in [6] and [14]. During flight, 
the system is assumed to perform a ballistic trajectory. 

Controlling the apex height is important when running on 
unknown terrain, allowing the foot to maintain a specific 
clearance from the ground, thus avoiding sudden 
discontinuities (e.g. rocks). The controller determines a 
touchdown angle to achieve the desired apex height, and 
applies a constant torque during stance to achieve the desired 
forward speed. Thus, the MP tries to maintain a passive gait 
with desired characteristics by applying proper actuation to 
compensate for energy losses. This approach results in 
minimum energy consumption, but requires an estimate of 
the leg compliance and system losses. 

During the flight phase (f), the desired touchdown angle 
γ td  to achieve a specified apex height is calculated as 
  γ td = f (stateat liftoff, xdes , hdes )  (1) 
where  xdes  and hdes  are the desired forward speed and apex 
height respectively. The robot leg is servoed to the desired 
angle using a simple proportional derivative (PD) controller. 
The control torque applied by the actuator is then, 
  τ f = kp ⋅ γ td −γ( ) + kd ⋅ − !γ( )  (2) 
where kp  and kd  are controller gains. The values of 
kp = 150  and kd = 2.4  have been selected and used in both 
simulations and experiments, in order for the controller to be 
both fast enough to change the leg angle before the next 
touchdown, while avoiding overshooting and unwanted 
oscillations. The necessary control torque that must be 
applied during the stance (s) phase, is 
  τ s = g state at liftoff, !xdes , hdes , γ td( )  (3) 

At the end of the flight, the next stance begins, the 
constant torque τ s  is applied, and the cycle repeats itself. In 
Fig. 2 the motion of the monopod using the MP on a 
nondeformable ground is presented. Although the response of 
the MP controller satisfies the desired gait targets, it relies on 
the assumptions of an ideal massless foot and of an 
interaction with a stiff ground that can be modeled by a 
revolute joint. This is common for most legged robot 
controllers. In the next sections, the assumptions of a stiff 
ground and massless foot are dropped, and the effects on the 
controller performance and gait characteristics are studied. 

 
Figure 2. Use of MP on a nondeformable ground: (a) Apex height and (b) 

Forward velocity. 

III. IMPACT MODEL FOR A DEFORMABLE TERRAIN 
The model of the foot-terrain interaction must represent 
realistically the motion behavior while running on 
deformable terrains. The main parameters that affect the 
motion are the compliance of the ground (e.g. running on 
cement versus running on sand), the depth of the permanent 
deformation that may occur (e.g. running on clay versus 
running on sand) and the change of characteristics due to 
repetitive loading on a particular point (i.e. compaction or 
similar phenomena). In a standard terramechanics approach, 
it is assumed that a wheel or a foot are in touch with the 
ground for considerable time, or permanently. This approach 
cannot be applied to the case of fast dynamic walking. A way 
to incorporate the elastoplastic behavior of the ground is by 
using an extension of non-linear viscoelastic models, called 
viscoplastic. In this work, viscoplasticity is used to examine 
the dynamic interaction between the foot and the ground, a 
method which is an alternative to the terramechanics and the 
terradynamics approaches. However it must be noted that in 
granular media, where impact forces are of hydrodynamic 
nature, the proposed model may be inappropriate. 

In viscoelastic theory, a compliant surface can be 
modeled by a combination of lumped parameter elements 
(springs and dampers). Some common impact models include 
the Kelvin-Voigt (KV) and the Hunt-Crossley (HC) [11]. The 
latter model shall be used as a reference as it provides a good 
initial description of the interaction. According to the HC 
model, the interaction force Fg  is 
 

 
Fg yg , yg( ) = kg ⋅ ygn + bg ⋅ yg ⋅ ygn   (4) 

where kg  and bg  are the stiffness and damping coefficients 
respectively, n  in the case of Hertzian non-adhesive contact 
is equal to 1.5, and yg  is the depth of penetration (positive 
towards the ground). The parameter kg  represents the 
equivalent stiffness between the materials that come into 
contact (i.e. foot and terrain) [15]. Damping is considered as 
a parameter affected by the stiffness [16], and is given by 
 bg = 1.5 ⋅ca ⋅ kg   (5) 
where ca  is usually between 0.01-0.5 depending on the 
materials and impact velocity. Throughout this work we use 
ca = 0.2  without affecting the generality of the conclusions.  

Existing viscoelastic models implicitly assume that the 
impact starts and ends at yg = 0 , i.e. that no permanent 
deformation applies. However, this is not true in general. 
Also according to viscoelastic models, the terrain behavior 
under repetitive loading or compaction is not modelled. 
Examining closely the ideal case (id), in which the impact 

(b)

Fo
rw

ar
d 

Ve
lo

ci
ty

   
   

(m
/s)

x

0 1 20.6

0.7

0.8

0.9

1

1.1

1.2

1.3
Desired Forward Velocity

Distance      (m)x 

M
ai

n 
Bo

dy
 H

ei
gh

t  
   

(m
)

y

(a)
0 1 20.15

0.2

0.25

0.3

Desired Apex Height
Apex Height

Distance      (m)x 

hdes

xdes



  

(stance in this case) starts and ends at yg = 0 , one assumes 
that the robot clears the ground at the end with some spring 
elongation lid ,e  (i.e. equal to the momentary length of the 
leg). On a nonideal (nid) deformable ground however, the 
robot shall clear the ground at yg > 0  due to terrain 
permanent deformation; the final elongation lnid ,e  will be in 
general lnid ,e ≠ lid ,e . Thus a different approach is required. 

Assuming a viscoelastic model, such as the HC, suppose 
that a body impacts the ground, Fig. 3a. During compression, 
both the interaction force and depth increase, and the relative 
velocity decreases. When the foot velocity is zeroed, i.e. 

 
yg = 0 , the maximum compression yc,max  has been reached. 

During the restitution phase, the foot velocity increases but in 
the opposite direction and the depth and the interaction force 
decrease. The restitution ends when both the depth and the 
interaction force are zeroed, but in fact this is due to the 
closed form of the impact models. The key event is that the 
interaction force is zeroed, i.e. there is no more contact 
between the impacting body (impactor) and the terrain. 

Studying the behavior of terrains using experimental data, 
as for example in [8], it is obvious that the deformable nature 
of the terrain is not described accurately with such a model. 
Yet the strict viscoelastic description of the process can be 
extended in the case of plastic deformation via appropriate 
lumped elements (viscoplastic description). This work 
proposes a model that treats the impact piecewise, Fig. 3b. 

 
Figure 3. Impact models (a) Standard viscoelastic and (b) Proposed 

viscoplastic. 

According to the proposed model, the compression phase 
is the same to that in the viscoelastic case. During this phase, 
part of the energy is stored in the (fictitious) spring, which 
represents the interaction stiffness, another part is dissipated 
through material internal losses (represented by damping bg ) 
and a last part is dissipated during terrain shape deformation 
(e.g. due to cratering around the impact point or compaction). 
As restitution is reached, material in the direction of motion 
has been displaced due to the deformation and/or the terrain 
becomes stiffer because of compaction. Then the spring, 
which represents the interaction stiffness, cannot be extended 
to its initial height (i.e. yg = 0 ). The restitution phase will be 
shorter and the spring stiffer. Thus there is strong non-
linearity between compression and restitution, which takes 
the form of a piecewise equation. 

The interaction force Fg  at instance i  is modeled as, 

 

 

Fg
i yg , yg( ) =

Fc
i = λc

i ⋅ kg + bg ⋅ yg( ) yg − yei−1( )n , yg ≥ 0
Fr
i = λr

i ⋅ kg + bg ⋅ yg( ) yg − yei( )n , yg < 0
⎧
⎨
⎪

⎩⎪
 (6) 

where the subscript c  stands for compression and r  for 
restitution, and ye  is the depth at the end of impact (see Fig. 
3b). To account for succesive impacts on the same horizontal 
point, the index i  is used to identify an impact instance, as 
the terrain inherits the characteristics from the previous 
instant due to permanent deformations. The latter are 
expressed with the Coefficient of Permanent Terrain 
Deformation λ , which has a recursive form 

 

 

λc
i =

1, i = 1

λr
i−1, i >1, i ∈

⎧
⎨
⎪

⎩⎪

λr
i = λr

i materials, velocity, i( ), i ∈

 (7) 

Since the ground spring is stiffer during restitution than in 
compression, λr

i ≥ λc
i ≥1 . Typically, as the same horizontal 

position (contact point) is compressed, it becomes stiffer, 
therefore in this work the following model is proposed, 
 

 
λr
i = 1+ a i( ) ⋅ 1− e− i⋅β i( )( ), i ∈   (8) 

where a i( ) , β i( )  are functions which also depend on 
materials and velocity. This exponential function gives larger 
permanent deformations during the first impacts. Note that if 
a i( ) = 0  or β i( ) = 0 , (6) reduces to the HC model. 
Parameter a  sets the maximum value of λr

i , whereas an 
increase in β  increases the speed of reaching this value. Fig. 
4 illustrates (6), i.e. the impact force as a function of 
penetration depth for various λ , in the case of a 1kg  ball 
falling with zero velocity from 0.5m  height to a surface with 
kg = 8 ⋅10

4 N m . 

 
Figure 4. Impact curves for the proposed impact model (6) for various λ . 
The inset shows the corresponding distribution of the dissipated energy. 

In the inset of Fig. 4 the distribution of the energy dissipation 
is presented. Note that for clarity fixed values of λ  were 
used in Fig. 4 (i.e. (8) was not used). 

The final depth ye
i  can be calculated by observing that at 

the maximum compression yc,max
i  the following applies 

 
 
yc,max
i ⇔ Fc

i = Fr
i and yg = 0   (9) 

and using (6) one can deduce 

 ye
i = yc,max

i ⋅ 1− λc
i λr

in( ) + yei−1 ⋅ λc
i λr

in( )   (10) 

where ye
0 = 0  for consistency. 

It is very interesting to study the impact behavior of a 
more complex system of bodies like the robot on Fig. 6, 
while it falls vertically. As the foot mass comes into contact 

(a) Impact Using Standard Viscoelastic Models

(b) Impact Using Proposed Viscoplastic Model
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with the ground, the phases of compression and restitution 
occur. However the upper mass due to its larger inertia and 
leg compliance, continues its downward motion and thus the 
forces which act on the lower mass by the spring (and 
damper) and the ground interaction can be equal before the 
system clears the ground, therefore a “recompression” phase 
starts (impact instance i +1 ). This can be repeated many 
times until the system as a whole clears the terrain, and the 
stance (i.e. the impact) is considered over. In Fig. 5 the 
interaction force versus the penetration depth is presented for 
such a case on a very stiff ground kg = 10

6 N m( ) , where the 
upper and lower masses are 4kg  and 0.1kg  respectively, 
length of the leg L = 0.30m  and spring and damper 
parameters k = 12,000N/m  and b = 0  Ns/m . Equation (8) 
is used with a = 0.5  and β = 1 . The system falls from 1cm  
height with no initial velocity. 

 
Figure 5. Impact curve for a case with many recompressions. 

Discussion. (a) An advantage of the developed model is 
that it can be used for repetitive loading by increasing the 
impact instance index i  for a particular contact point. A 
special case of repetitive loading is when the impactor is a 
multibody system, such as a legged robot. (b) This model is 
arithmetically stiff. Depending on the complexity of the 
problem to solve, high accuracy in Matlab may be required, 
(c) The use of the HC model as a basis in (6) is purely a 
matter of choice; the core ideas of the developed model are 
also applicable to other viscoelastic models, (d) proper 
selection of λ  can describe complex phenomena, and (e) due 
to the previous reasons, this is a very general impact model. 

IV. EXTENDED SYSTEM MODEL AND CONTROL 
The foot is no longer considered massless during the stance 
or flight phase and a more detailed model is developed. The 
goal is to make the controller cope with terrain compliance 
and deformation. It is assumed that: (i) the foot is a point 
mass, i.e. a point contact occurs each time the foot impacts 
the ground, (ii) during stance, the foot motion is constrained 
in the horizontal direction, i.e. static friction is able to prevent 
the foot from slipping. To ensure this, a restriction of ±15deg 
on the angle range is implemented, (iii) bulldozing can be 
neglected, and (iv) the actuator is torque limited. 

Model Development. The model shown in Fig. 6, consists 
of a mass M  describing an effective mass due to the robot 
body and to part of the experimental setup, and a mass m  
describing the effective mass of the robot leg and foot. The 
rest of the symbols are the same to those in Section II. The 
force from the ground Fg( )  is calculated using (6). During 

the flight phase Fg = 0 ; a controller is used to position the 
leg at the desired touchdown angle given by (1). 

 
Figure 6. Model of one-legged robot under examination. 

The system variables for the flight phase are the 
coordinates of the main body x , y  and the coordinates of 
the foot x ft , yft . The equations of motion become (with
sγ =sinγ  and cγ =cosγ ) 
  M ⋅ !!x + k ⋅ L − l( ) ⋅ sγ − b ⋅ !l ⋅ sγ = −τ f ⋅ l

−1 ⋅ cγ  (11) 

  M ⋅ !!y + M ⋅ g − k ⋅ L − l( ) ⋅ cγ + b ⋅ !l ⋅ cγ = −τ f ⋅ l
−1 ⋅ sγ  (12) 

  m ⋅ !!x ft − k ⋅ L − l( ) ⋅ sγ + b ⋅ !l ⋅ sγ = τ f ⋅ l
−1 ⋅ cγ  (13) 

  m ⋅ !!yft + m ⋅ g + k ⋅ L − l( ) ⋅ cγ − b ⋅ !l ⋅ cγ = τ f ⋅ l
−1 ⋅ sγ  (14) 

where τ f  is the actuator torque during flight. During stance, 
the actuator torque is τ s  (instead of τ f  ), and x ft  remains 
constant due to assumption (ii). Thus (13) can be used to 
calculate the static friction required for non-slip, (11) and 
(12) remain the same, whereas (14) becomes 
  m ⋅ !!yft + m ⋅ g + k ⋅ L − l( ) ⋅ cγ − b ⋅ !l ⋅ cγ = τ s ⋅ l

−1 ⋅ sγ + Fg  (15) 
The stance phase begins with the foot initially touching 

the ground following a flight phase ( yft = 0 ) and terminates 
when the force from the ground is zeroed ( Fg = 0 ). During 
the impact of the foot with the ground, the absolute value of 
the coordinate yft  of the foot equals the depth of penetration. 

Extended MultiPart controller (x-MP). The controller 
objective is to achieve and retain a desired forward speed and 
apex height on any terrain. This controller is based on the MP 
presented in Section II. The leg characteristics used in the 
MP algorithm in order to calculate γ td

j  for gait j  must be 
modified since the foot penetrates the ground and it has mass. 
Thus the x-MP should calculate an appropriate stiffness ′k  in 
order to compensate for this difference. To this end, the 
stance phase of gait j −1  is considered as the half period of a 
harmonic oscillation with natural frequency ω s

j−1
 thus 

 Δts
j−1 = π ω s

j−1 = π ⋅ M ′k ⇒ ′k = π Δts
j−1( )2 ⋅M  (16) 

with stance duration Δts
j−1 given by, 

 Δts
j−1 = tlo

j−1 − ttd
j−1  (17) 

where ttd
j−1  and tlo

j−1
 are the touchdown (td) and liftoff (lo) 

time instants. If a motion with the same characteristics was 
conducted on a nondeformable terrain (nd), the maximum 
compression of the leg’s spring would have been 
  Δlmax

j−1 = L − ymin
j−1   (18) 

where ymin
j−1  is the lowest height of the robot mass. Thus the 

leg length lnd
j−1  during stance would be approximated as 

 lnd
j−1 t( ) = L − Δlmax

j−1 ⋅sin ω s
j−1 ⋅ t − ttd

j−1( )⎡⎣ ⎤⎦  (19) 

where ttd
j−1 ≤ t ≤ tlo

j−1  and the frequency ω s
j−1  can be 

calculated using (16).  
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Energy losses at the MP are introduced through the 
viscous damping of the leg. No energy losses occur during 
flight as the robot mass performs a ballistic trajectory. An 
appropriate damping coefficient ′b  must be used in the x-MP 
to compensate for all energy losses (leg damping and ground 
dissipation) that occurred during the entire gait j −1  
duration, including flight (due to the residue oscillations). 
Using (19), the behavior of both models is associated. By 
applying energy conservation, the following applies 

 
 
′b ⋅ lnd

j−1( )2
ttd
j−1

tlo
j−1

∫ dt = Egdis
j−1 + Edamp

j−1   (20) 

where Egdis
j−1  and Edamp

j−1

 are the energy dissipated by the 
ground and by the leg’ s joint damping respectively. These 
can be calculated for the entire gait as follows 

 
 
Egdis

j−1 = Fg
j−1 ⋅ yft

j−1 dt
ttd
j−1

tlo
j−1

∫   (21) 

 
 
Edamp

j−1 = b ⋅ l j−1( )2 dt
tlo
j−2

tlo
j−1

∫   (22) 

where  l  is the actual rate of leg length change. Using (16) 
and (20), ′k  and ′b  required in the x-MP are calculated. 

The constant torque to be applied during the stance phase 
so as to achieve and maintain the desired forward speed is 
calculated in such a way that a desired energy level is 
reached. In the apex height of gait j  (main body position at 
hdes ), the system must have a desired forward speed  !xdes . It 
is assumed that at the apex height, the leg spring has reached 
its free length L  and that the leg has been positioned already 
at the desired touchdown angle γ td

j . Thus, the desired energy 
level that the system must maintain in gait j  is 

 
 
Edes

j = 1
2
M +m( ) ⋅ xdes2 +M ⋅g ⋅hdes +m ⋅g ⋅ hdes − L ⋅cγ td

j( ) (23) 

while the liftoff energy of the previous gait Elo
j−1  is 

 

 

Elo
j−1 = M

2
⋅ xlo

j−1( )2 + yloj−1( )2( ) + m2 ⋅ x ft ,lo
j−1( )2 + yft ,loj−1( )2( ) +

+ M ⋅ g ⋅ ylo
j−1 + m ⋅ g ⋅ yft ,lo

j−1 +
k
2
⋅ L − llo

j−1( )2
 (24) 

The actuator during the stance phase of gait j  must 
compensate for the losses and maintain the motion, thus the 
required energy Em

j  that it must provide is 
 Em

j = Edes
j − Elo

j−1( ) + Egdis
j−1 + Edamp

j−1   (25) 
Due to Em

j , the required torque τ s
j  is calculated as 

 Em
j = τ s

j ⋅ γ lo
j−1 −γ td

j−1( )⇒τ s
j = Em

j ⋅ γ lo
j−1 −γ td

j−1( )−1   (26) 
If no energy losses exist, (25) and (26) show that since the 
controller achieves the desired values then Edes

j = Elo
j−1  and 

the motion becomes an ideal oscillation and thus  τ s
j ! 0 , 

corresponding to a passive gait. 
Discussion. The development of the x-MP relies on 

energy magnitudes. Therefore it does not require the terrain 
parameters which could lead to a significantly more complex 
sensor system. In fact, the x-MP can easily work with the 
same sensors required for the MP, with the only addition of a 
foot force sensor to determine the ground force Fg . No extra 
sensors in order to determine the terrain parameters are 
required. Since the x-MP uses data from the previous gait, 
some approximate initial values must be assumed before the 
first gait, so that the robot be able to perform it successfully. 

V. SIMULATIONS RESULTS  
Τo evaluate the effects of the terrain and examine the 
behavior of the controller, a set of simulations are run. The 
equivalent stiffness kg  between the materials in contact (i.e. 
foot and ground) is used [15], where the properties of various 
terrains are found in [17]. For example, for a rubber foot with 
Young’ s modulus E = 50MPa  and granite with Young’ s 
modulus E = 50GPa , an equivalent stiffness of 
kg ≈ 327,000N m  applies. Three main categories were 
selected compared to the leg stiffness: soft ground with 
kg = 8 ⋅10

4 N m , moderate ground with kg = 2 ⋅10
5 N m  

and stiff ground with kg = 4 ⋅10
5 N m . 

In all cases a monopod (Fig. 6) is considered. Its 
parameters are: masses M = 4kg  and m = 0.1kg , length of 
the leg L = 0.30m  and spring and damper parameters 
k = 12,000N/m  and b = 3Ns/m . The acceleration of gravity 
is 9.81m s2 . The simulations were performed in Matlab 
using ode23s with absolute and relative tolerance 10−5  and 
10−4  respectively and maximum step 10−4 . To minimize the 
zero-crossing arithmetic problems created by the problem 
stiffness, the impact was considered over when the 
interaction force between the foot and the terrain was below 
5N (by increasing tolerances, this value can be lower, 
however this set was selected as it produced both fast and 
reasonable results after examining various sets of tolerances). 

In Fig. 7 the response of the MP and the x-MP for the 
defined ground types is compared. The initial conditions are: 
height h0 = 0.32m , forward velocity  !x0 = 1.0m s . The 
desired commands are apex height hdes = 0.32m→ 0.34m  at  
increments of 1cm  and forward velocity  !xdes = 0.8m s , 
while the ground is becoming more compliant. The figure is 
divided in the three regions according to stiffness. When the 
ground is stiff, the MP tries to achieve the objectives 
however the desired velocity is not reached, while the x-MP 
quickly converges to the desired values. In the moderate 
ground the MP reaches again a steady state, however not at 
the desired values, while the x-MP quickly adapts. 

 

 
Figure 7. MP & x-MP comparison for (a) Apex height (b) Forward velocity. 
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As the ground becomes soft the MP is destabilized; again 
the x-MP follows the desired commands. Note that the MP 
performs better as the ground can be assumed as 
nondeformable, i.e. kg → ≥106 N m( ) . As compliance 
increases the MP is destabilized as it disregards the effects of 
energy losses. This is due to the fact that the exact mechanics 
of the impact between the foot and the ground are 
disregarded in the control design; the MP assumes no energy 
losses occur in stance due to the ground compliance. On the 
other hand the x-MP adapts quickly to each terrain and 
maintains its performance independently of the ground. 

Finally the performance of the x-MP is presented in Fig. 8 
for various terrains where except for different compliances 
(shown by different kg ), shape deformation also exists using 
(8) (shown by the max λ = a i( )  in the figure). The initial 
conditions are height h0 = 0.33m  and forward velocity 
 !x0 = 1.0m s  and the goals are apex height hdes = 0.32m  and 
forward velocity  !xdes = 0.8m s . At the beginning in the stiff 
terrain the x-MP adapts quickly. Next as the ground softens 
and the deformations increase, more torque is required to 
achieve the desired values. As the deformations become 
larger (maxλ = 3 ) the x-MP results in small deviations, due 
to the fact that on such terrain ′k  and ′b  do not fully 
compensate the deformations; the improvement of the 
controller on such cases is an ongoing work. At the moderate 
ground, the torque requirements are lower, however again the 
effect of the higher deformation is obvious. 

 

 

 
Figure 8. Monopod run on a terrain with various values using x-MP: (a) 

Apex height, (b) Forward velocity and (c) Motor torque. 

Yet x-MP retains its desired values and finally as the robot 
enters again the stiff terrain, it can easier achieve the goals. 
The torque during stance is between 0Nm  and −3Nm .  

VI. CONCLUSIONS 
This work studied the effects of foot-terrain interactions in 
legged robots and control methods to cancel them out. The 
adverse effects of terrain deformation during motion were 
illustrated and a new model for impact dynamics was 
developed, allowing the study of the behavior of a monopod 
robot in fast walking. Based on previous response 
monitoring, the MP controller was modified to cope with 
deformable terrains. The new controller, called x-MP, does 
not require an exact knowledge of terrain parameters and still 
compensates for the effects of the energy losses. Using the x-
MP, the system was able to overcome the variations of the 
ground, stabilizing the gait characteristics near the desired 
ones. In the ongoing work, extension of this work to include 
further leg and terrain details, tangential forces, cost of 
transport and experiments, is underway. 
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