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I. MOTIVATION

Recent advances in the field of legged robotics [23, 19,
55, 33, 7], including several demonstrations from companies
[10, 16, 1, 42], show that legged robots are becoming better
at traversing rough terrains and environments. Despite these
advances, legged robots are still mostly used as locomotion
research platforms [40], and their limited commercial applica-
tions are restricted to inspection [2], security, and “last-meter”
delivery [3], where interaction with the environment is not
needed and rather avoided. Given the inherent ability of legged
robots to use their limbs as general-purpose manipulators, this
research seeks to demonstrate ways of accomplishing tasks
with legged robots that require interaction with their surround-
ings, such as rearrangement planning [47, 18], or navigation
among movable obstacles [36] to escape a dangerous situation
or help trapped people in search-and-rescue missions.

Focusing on the task planning literature, it can be seen that
existing solutions are either task-specific, environment-specific
or platform-specific, and are typically not accompanied by any
formal proofs of correctness. For example, Task-and-Motion-
Planning (TAMP) methods [21, 39] or classical AI methods
can find a particular (often optimal [50]) solution to a task
at hand, but require good prior knowledge [28], and do not
generalize well in the presence of unanticipated conditions.
Similarly, recent developments in Deep Reinforcement Learn-
ing [37] have yielded impressive results [40, 29], but are tied to
a specific platform for which an abundance of data is needed.

Instead, as shown in Fig. 1, we seek to come up with
a modular, and task, environment and platform independent
architecture (inherently unavailable in end-to-end deep learn-
ing schemes), with formal correctness conclusions based on
some underlying assumptions about the environment, where
an offline deliberative layer for task planning works closely
with an online reactive module, that uses exteroception and
handles environment uncertainties. This reactive module com-
municates with a platform-specific gait layer, comprised of a
set of simple dynamical primitives, that realizes the commands
from the reactive layer in a way that is meaningful for the
robot. Each of these independent layers comes with provable
guarantees of optimality (for the deliberative layer), collision
avoidance and convergence (for the reactive layer) or low-level
performance, expressed as “symbols” of energy landscapes
composed either in parallel [14, 41] or sequentially [26, 13]
(for the gait layer), offering the chance of generalization across
multiple mobile manipulators (legged or wheeled).
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Fig. 1. The proposed hierarchical control structure. In the deliberative layer,
an offline high-level planner outputs a sequence of symbolic actions, that are
executed online using a reactive controller that incorporates perception, mod-
ifies the high-level plan appropriately to account for unanticipated conditions
and obstacles, and issues abstract velocity and gripper commands (see Section
III). The low-level gait layer uses these commands to call out appropriately
parameterized joint-level feedback controllers for the robotic platform.

II. PRIOR WORK

Although the problem of using a higher-level planner to
inform subgoals of a lower-level planner has been examined
previously, most work has focused on ad hoc abstractions that
perform well empirically. For example, Wolfe et al. [54] use
a task hierarchy to guide the search for a low-level plan by
expanding high-level plans in a best-first way. Berenson et
al. [6] and Konidaris et al. [25] use specific formulations
of hierarchy without guaranteeing optimality. Kaelbling and
Lozano-Perez [21] avoid the computational cost by committing
to decisions at a high level of abstraction. On the other hand,
Vega-Brown and Roy [50] provided a further step towards
tractable planning that incorporated complex kinematic con-
straints, and showed how to use angelic semantics [27] to
guarantee hierarchical optimality [51].

Also, recent advances in the theory of sensor-based reactive
navigation [4] and its application to wheeled [5] and legged
[45] robots promote its central role in provably correct archi-
tectures for complicated mobile manipulation tasks [46, 47].
The advance of the new theory [4] over prior sensor-based
collision avoidance schemes [44, 43, 9, 8, 12, 15, 20, 30, 38]
was the additional guaranteed convergence to a designated
goal which had theretofore only been established for reactive
planners possessing substantial prior knowledge about the
environment [35, 34]. We seek to build on such methods that
trade away prior knowledge for the presumption of geometric
simplicity, expand them to geometrically more interesting
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Fig. 2. Minitaur using the reactive control architecture in [49], also shown in the reactive layer of Fig. 1, and its onboard sensors, to avoid semantically
tagged and other unknown obstacles, successfully localize an object of interest (cart) and use mobile manipulation primitives [41] to jump and mount it.

environments, and use them in parallel with recent methods
that show how to compositionally perform complex mobile
manipulation maneuvers with legged robots [41].

III. PROBLEM STATEMENT

For our work, we use the Minitaur [23] robot and as-
sume it operates in a closed and compact workspace whose
boundary is known. The robot is tasked to either move to a
predefined location that is not accessible without manipulating
its environment, or move each of n movable objects from
their initial configuration to a user-specified goal configuration.
We assume that both the initial configuration and the target
configuration are known. In addition to the known boundary
of the workspace, the workspace is cluttered by an unknown
number of fixed, disjoint, potentially non-convex obstacles.

For (reactive) planning purposes, Minitaur is modeled as a
first-order, nonholonomically-constrained, disk-shaped robot.
The robot is assumed to have access to its state (e.g., through
legged state estimation methods [17]), and to possess a LIDAR
for local obstacle avoidance and a camera for familiar ob-
ject/obstacle recognition, using either deep learning perception
schemes [31] or conventional methods like AprilTags [53]. It
is also assumed to use a gripper for moving objects, which
can be either engaged or disengaged. Of course, Minitaur is
only an imperfect unicycle [45] and does not actually possess a
gripper; it has to coordinate its limbs and walk while following
a path, avoid an obstacle, jump, or lock an object in place.
Hence, the reactive planner’s commands must be translated to
suitable low-level commands on the robot’s joints.

The aforementioned description imposes the hierarchical
structure shown in Fig. 1 and the following problem decom-
position into the complementary sub-problems:

1) In the deliberative layer, find a symbolic plan, i.e., a
sequence of symbolic actions whose successful imple-
mentation is guaranteed to complete the task, assuming
idealized perfect prior knowledge.

2) In the reactive layer, implement each of the symbolic
actions by finding appropriate commands according to
the robot’s equations of motion, while avoiding the
perceived obstacles (unanticipated by the deliberative
planner) encountered along the way.

3) In the gait layer, use a hybrid dynamical systems frame-
work with simple guard conditions to choose between
constituent gaits, providing an abstract interface to the
reactive layer, regardless of the state of the robot/objects.

IV. CONTRIBUTIONS

Based on the aforementioned description, we suggest with
formal arguments and empirical demonstration [47] the effec-
tiveness of a hierarchical control structure for a highly dynamic
physical system, shown in Fig. 1. We believe this is the first
provably correct deliberative/reactive planner to engage an
unmodified general purpose mobile manipulator in physical
rearrangements of its environment. We are able to accomplish
a variety of tasks, including desired assemblies of objects
with size comparable to the robot’s size among unanticipated
conditions and obstacles [46], navigation among movable
obstacles, and strategic escapes by exploiting and manipulating
the robot’s environment [52]. To this end, we develop the
mobile manipulation maneuvers to accomplish each task at
hand [47], successfully anchor the useful kinematic unicycle
template to control the highly dynamic Minitaur robot [45]
and integrate perceptual feedback with low-level control to
coordinate the robot’s movement [47], as shown in Fig. 2.

At the same time, this research also exploits recent develop-
ments in semantic SLAM [11] and object pose and triangular
mesh extraction using convolutional neural net architectures
[31, 22, 24] to provide an avenue for incorporating partial
prior knowledge within a deterministic framework well suited
to existing vector field planning methods [4]. In this way, we
are able to guarantee collision avoidance and convergence to
the designated goal for both a differential drive robot and a
differential drive robot gripping and manipulating objects, in a
workspace cluttered with completely unknown convex obsta-
cles [46], “familiar”, online recognizable non-convex obstacles
[49, 48], or completely unknown non-convex obstacles [47]
that obey specific “length-scale” geometric assumptions [32].

Finally, in order to encourage the application of our meth-
ods, we are planning to release accompanying software with
an open-source implementation of our reactive mobile manip-
ulation algorithms in C++ and Python, with ROS wrappers.
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